Finite primitive permutation groups containing a permutation having at most four cycles

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Closures of Finite Primitive Permutation Groups

Let G be a primitive permutation group on a finite set ft, and, for k ^ 2, let G be the Ar-closure of G, that is, the largest subgroup of Sym (ft) preserving all the G-invariant ^-relations on ft. Suppose that G<H^ G and G and H have different socles. It is shown that k ^ 5 and the groups G and H are classified explicitly.

متن کامل

Primitive Permutation Groups of Finite Morley Rank

We prove a version of the O'Nan-Scott Theorem for detinably primitive permutation groups of finite Morley rank. This yields questions about structures of finite Morley rank of the form (F, + , . , / / ) where (F, +,.) is an algebraically closed field and H is a central extension of a simple group with /Y=sGL(rt, F). We obtain partial results on such groups H, and show for example that if char(/...

متن کامل

Distinguishing Primitive Permutation Groups

Let G be a permutation group acting on a set V . A partition π of V is distinguishing if the only element of G that fixes each cell of π is the identity. The distinguishing number of G is the minimum number of cells in a distinguishing partition. We prove that if G is a primitive permutation group and |V | ≥ 336, its distinguishing number is two.

متن کامل

Finite Permutation Groups

1 Multiply transitive groups Theorem 1.1. Let Ω be a finite set and G ≤ Sym(Ω) be 2–transitive. Let N E G be a minimal normal subgroup. Then one of the following holds: (a) N is regular and elementary abelian. (b) N is primitive, simple and not abelian. Proof. First we show that N is unique. Suppose that M is another minimal normal subgroup of G, so N ∩M = {e} and therefore [N,M ] = {e}. Since ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2016

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2015.12.032